Methoden II: Methoden der empirischen Kommunikations- und Medienforschung
Freie Universität Berlin
12. 05. 2025
| Parameter | Age | Newspapers | Political_knowledge | 
|---|---|---|---|
| Age | 0.21*** | 0.30*** | |
| Newspapers | 0.21*** | 0.33*** | |
| Political_knowledge | 0.30*** | 0.33*** | 
p-value adjustment method: Holm (1979)
Beispiel für vier Befragte:
| Age | y | yhat | e | e2 | 
|---|---|---|---|---|
| 23 | 1 | 2.2 | -1.2 | 1.3 | 
| 37 | 4 | 2.6 | 1.4 | 2.0 | 
| 55 | 2 | 3.1 | -1.1 | 1.2 | 
| 62 | 5 | 3.3 | 1.7 | 2.9 | 

             (Intercept) residuals_age_newspapers 
                   0.000                    0.024 
| Parameter | Coefficient | 95% CI | t(990) | p | Std. Coef. | Std. Coef. 95% CI | Fit | 
|---|---|---|---|---|---|---|---|
| (Intercept) | 0.99 | (0.67, 1.31) | 6.07 | < .001 | 3.99e-16 | (-0.06, 0.06) | |
| Age | 0.02 | (0.02, 0.03) | 8.24 | < .001 | 0.24 | (0.19, 0.30) | |
| Newspapers | 0.22 | (0.18, 0.27) | 9.31 | < .001 | 0.28 | (0.22, 0.33) | |
| R2 (adj.) | 0.16 | 
| Parameter | Coefficient | 95% CI | t(990) | p | Std. Coef. | Std. Coef. 95% CI | Fit | 
|---|---|---|---|---|---|---|---|
| (Intercept) | 0.99 | (0.67, 1.31) | 6.07 | < .001 | 3.99e-16 | (-0.06, 0.06) | |
| Age | 0.02 | (0.02, 0.03) | 8.24 | < .001 | 0.24 | (0.19, 0.30) | |
| Newspapers | 0.22 | (0.18, 0.27) | 9.31 | < .001 | 0.28 | (0.22, 0.33) | |
| R2 (adj.) | 0.16 | 
Beispiel für vier Befragte:
| Age | y | yhat | e | e2 | e_M | e_M2 | 
|---|---|---|---|---|---|---|
| 23 | 1 | 2.2 | -1.2 | 1.3 | -2 | 4.2 | 
| 37 | 4 | 2.6 | 1.4 | 2.0 | 1 | 0.9 | 
| 55 | 2 | 3.1 | -1.1 | 1.2 | -1 | 1.1 | 
| 62 | 5 | 3.3 | 1.7 | 2.9 | 2 | 3.8 | 

| Parameter | Coefficient | 95% CI | t(990) | p | Std. Coef. | Std. Coef. 95% CI | Fit | 
|---|---|---|---|---|---|---|---|
| (Intercept) | 0.99 | (0.67, 1.31) | 6.07 | < .001 | 3.99e-16 | (-0.06, 0.06) | |
| Age | 0.02 | (0.02, 0.03) | 8.24 | < .001 | 0.24 | (0.19, 0.30) | |
| Newspapers | 0.22 | (0.18, 0.27) | 9.31 | < .001 | 0.28 | (0.22, 0.33) | |
| R2 (adj.) | 0.16 | 
| Parameter | Coefficient | 95% CI | t(991) | p | 
|---|---|---|---|---|
| (Intercept) | 3.44 | (3.33, 3.55) | 60.48 | < .001 | 
| Gender (female) | -0.84 | (-1.00, -0.67) | -10.14 | < .001 | 
| Group | Mean_Group1 | Mean_Group2 | Difference | 95% CI | t | p | 
|---|---|---|---|---|---|---|
| Gender | 3.44 | 2.61 | 0.84 | (0.67, 1.00) | 10.15 | < .001 | 
| Zugehörigkeit | Middle | High | 
|---|---|---|
| Lower | 0 | 0 | 
| Middle | 1 | 0 | 
| High | 0 | 1 | 
| Lower | Middle | High | 
|---|---|---|
| 2.58 | 2.97 | 3.25 | 
| Parameter | Coefficient | 95% CI | 
|---|---|---|
| (Intercept) | 2.58 | (2.35, 2.81) | 
| Education (Middle) | 0.39 | (0.13, 0.65) | 
| Education (High) | 0.67 | (0.41, 0.93) | 
| Zugehörigkeit | Lower | High | 
|---|---|---|
| Middle | 0 | 0 | 
| Lower | 1 | 0 | 
| High | 0 | 1 | 
| Lower | Middle | High | 
|---|---|---|
| 2.58 | 2.97 | 3.25 | 
| Parameter | Coefficient | 95% CI | 
|---|---|---|
| (Intercept) | 2.97 | (2.84, 3.10) | 
| Education (Lower) | -0.39 | (-0.65, -0.13) | 
| Education (High) | 0.28 | (0.10, 0.46) | 
| Term | Contrast | Estimate | Std. Error | z | Pr(>|z|) | 
|---|---|---|---|---|---|
| Education | mean(High) - mean(Lower) | 0.669 | 0.131 | 5.09 | < 0.001 | 
| Education | mean(High) - mean(Middle) | 0.279 | 0.092 | 3.03 | 0.00724 | 
| Education | mean(Middle) - mean(Lower) | 0.389 | 0.133 | 2.92 | 0.01045 | 
m1 <- lm(Political_knowledge ~ Radio + Television + Newspapers + Online_news_sites + Twitter + 
    Facebook + Gender + Age + Education + Political_interest, data = d)
m4 <- lm(Political_knowledge ~ Radio + Television + Newspapers + Online_news_sites + Twitter + 
    Facebook + Gender + Age + Education + Political_interest + Information_overload, data = d)| Model 1 | Model 4 | |
|---|---|---|
| (Intercept) | 0.46 (0.22)* | 0.67 (0.23)** | 
| Radio | -0.01 (0.02) | -0.01 (0.02) | 
| Television | 0.08 (0.03)** | 0.09 (0.03)** | 
| Newspapers | 0.08 (0.02)*** | 0.08 (0.02)*** | 
| Online_news_sites | 0.06 (0.02)** | 0.06 (0.02)** | 
| -0.06 (0.04) | -0.05 (0.04) | |
| -0.07 (0.02)*** | -0.07 (0.02)*** | |
| Genderfemale | -0.48 (0.07)*** | -0.46 (0.07)*** | 
| Age | 0.02 (0.00)*** | 0.02 (0.00)*** | 
| EducationMiddle | 0.28 (0.11)* | 0.27 (0.11)* | 
| EducationHigh | 0.48 (0.11)*** | 0.48 (0.11)*** | 
| Political_interest | 0.18 (0.01)*** | 0.17 (0.01)*** | 
| Information_overload | -0.03 (0.01)** | |
| Num.Obs. | 993 | 993 | 
| R2 Adj. | 0.371 | 0.376 | 
| Parameter | Coefficient | 95% CI | t(980) | p | Std. Coef. | Std. Coef. 95% CI | Fit | 
|---|---|---|---|---|---|---|---|
| (Intercept) | 0.67 | (0.21, 1.12) | 2.90 | 0.004 | -0.08 | (-0.22, 0.06) | |
| Radio | -7.45e-03 | (-0.05, 0.04) | -0.34 | 0.736 | -9.45e-03 | (-0.06, 0.05) | |
| Television | 0.09 | (0.03, 0.15) | 2.80 | 0.005 | 0.08 | (0.03, 0.14) | |
| Newspapers | 0.08 | (0.04, 0.13) | 3.46 | < .001 | 0.10 | (0.04, 0.16) | |
| Online news sites | 0.06 | (0.02, 0.11) | 2.73 | 0.006 | 0.08 | (0.02, 0.14) | |
| -0.05 | (-0.13, 0.02) | -1.37 | 0.171 | -0.04 | (-0.09, 0.02) | ||
| -0.07 | (-0.11, -0.03) | -3.38 | < .001 | -0.10 | (-0.16, -0.04) | ||
| Gender (female) | -0.46 | (-0.60, -0.32) | -6.34 | < .001 | -0.34 | (-0.44, -0.23) | |
| Age | 0.02 | (0.01, 0.02) | 6.03 | < .001 | 0.17 | (0.12, 0.23) | |
| Education (Middle) | 0.27 | (0.06, 0.48) | 2.48 | 0.013 | 0.20 | (0.04, 0.35) | |
| Education (High) | 0.48 | (0.26, 0.69) | 4.27 | < .001 | 0.35 | (0.19, 0.51) | |
| Political interest | 0.17 | (0.14, 0.20) | 11.79 | < .001 | 0.34 | (0.28, 0.39) | |
| Information overload | -0.03 | (-0.05, -0.01) | -3.03 | 0.003 | -0.08 | (-0.13, -0.03) | |
| R2 (adj.) | 0.38 | 
NOCH NICHT BEHANDELT — ZUSAMMENFASSUNG FOLGT
| Parameter | Coefficient | 95% CI | t(980) | p | Std. Coef. | Std. Coef. CI | 
|---|---|---|---|---|---|---|
| (Intercept) | 0.67 | (0.21, 1.12) | 2.90 | 0.004 | -0.08 | (-0.22, 0.06) | 
| Radio | -7.45e-03 | (-0.05, 0.04) | -0.34 | 0.736 | -9.45e-03 | (-0.06, 0.05) | 
| Television | 0.09 | (0.03, 0.15) | 2.80 | 0.005 | 0.08 | (0.03, 0.14) | 
| Newspapers | 0.08 | (0.04, 0.13) | 3.46 | < .001 | 0.10 | (0.04, 0.16) | 
| Online news sites | 0.06 | (0.02, 0.11) | 2.73 | 0.006 | 0.08 | (0.02, 0.14) | 
| -0.05 | (-0.13, 0.02) | -1.37 | 0.171 | -0.04 | (-0.09, 0.02) | |
| -0.07 | (-0.11, -0.03) | -3.38 | < .001 | -0.10 | (-0.16, -0.04) | |
| Gender (female) | -0.46 | (-0.60, -0.32) | -6.34 | < .001 | -0.34 | (-0.44, -0.23) | 
| Age | 0.02 | (0.01, 0.02) | 6.03 | < .001 | 0.17 | (0.12, 0.23) | 
| Education (Middle) | 0.27 | (0.06, 0.48) | 2.48 | 0.013 | 0.20 | (0.04, 0.35) | 
| Education (High) | 0.48 | (0.26, 0.69) | 4.27 | < .001 | 0.35 | (0.19, 0.51) | 
| Political interest | 0.17 | (0.14, 0.20) | 11.79 | < .001 | 0.34 | (0.28, 0.39) | 
| Information overload | -0.03 | (-0.05, -0.01) | -3.03 | 0.003 | -0.08 | (-0.13, -0.03) | 
$NCV
| Parameter | Political_knowledge | Radio | Television | Newspapers | Online_news_sites | Age | Political_interest | Information_overload | ||
|---|---|---|---|---|---|---|---|---|---|---|
| Political_knowledge | 0.14*** | 0.26*** | 0.33*** | 0.22*** | -0.04 | -0.13*** | 0.30*** | 0.49*** | -0.09* | |
| Radio | 0.14*** | 0.39*** | 0.28*** | 0.22*** | 0.09 | 0.18*** | 0.05 | 0.20*** | 0.05 | |
| Television | 0.26*** | 0.39*** | 0.31*** | 0.28*** | 0.04 | 0.19*** | 0.24*** | 0.30*** | 0.08 | |
| Newspapers | 0.33*** | 0.28*** | 0.31*** | 0.33*** | 0.09 | 0.06 | 0.21*** | 0.33*** | 0.02 | |
| Online_news_sites | 0.22*** | 0.22*** | 0.28*** | 0.33*** | 0.23*** | 0.27*** | -0.08 | 0.32*** | 0.04 | |
| -0.04 | 0.09 | 0.04 | 0.09 | 0.23*** | 0.33*** | -0.15*** | 0.05 | 0.09 | ||
| -0.13*** | 0.18*** | 0.19*** | 0.06 | 0.27*** | 0.33*** | -0.25*** | 0.06 | 0.12** | ||
| Age | 0.30*** | 0.05 | 0.24*** | 0.21*** | -0.08 | -0.15*** | -0.25*** | 0.14*** | 0.05 | |
| Political_interest | 0.49*** | 0.20*** | 0.30*** | 0.33*** | 0.32*** | 0.05 | 0.06 | 0.14*** | -0.02 | |
| Information_overload | -0.09* | 0.05 | 0.08 | 0.02 | 0.04 | 0.09 | 0.12** | 0.05 | -0.02 | 
p-value adjustment method: Holm (1979)
$VIF
Interpretieren Sie die Regressionsergebnisse und vergleichen Sie Ihre Interpretation mit der Darstellung von Van Erkel & Van Aelst (2021). Stimmen Sie mit deren Interpretation überein?
[Beschreibung für R und RStudio auf eigenem Computer oder Pool-Computer]
04_mame.R aus Blackboard herunter. Speichern Sie die Datei in Ihren Arbeitsordner für die Vorlesung (in denselben Ordner, in dem die .R-Dateien aus den letzten Übungen liegen).uebung.Rproj.04_mame.R.[Beschreibung für WebR]
04_mame.R aus Blackboard herunter.04_mame.R und Vanerkel_Vanaelst_2021.dta (aus der ersten Übung) in den Ordner home/web_user hoch.04_mame.R.daten/.[Beschreibung für Posit.Cloud]
04_mame.R aus Blackboard herunter.04_mame.R in den Ordner uebung hoch.uebung.Rproj und innerhalb des Projekts die Datei 04_mame.R.uebung/ vor daten/ ein.Transformation von Variablen im Regressionsmodell; Interaktion & Moderation
Marko Bachl